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Abstract

White band disease (WBD) has decimated the Caribbean staghorn coral, Acropora cervicornis, since its emergence in 1979, but its etiology
remains unknown. Numerous WBD pathogen candidates from over nine bacterial families have been implicated, with a multi-year
field study recently identifying Cysteiniphilum litorale as the likely pathogen. Here, we use 16S rRNA gene amplicon sequencing to
profile changes in the bacterial communities in a tank-based transmission experiment in the Florida Keys using 50 nursery-raised
staghorn coral genotypes with varying disease resistances to determine whether any bacteria in the native staghorn coral microbiomes
were associated with WBD resistance and to identify bacterial amplicon sequencing variants (ASVs) associated with WBD exposure
and transmission. We found no significant associations, positive or negative, between any bacterial ASV, genus, or family and disease
resistance in native staghorn coral microbiomes but did identify nine bacterial ASVs strongly associated with disease outcome in the
tank-based transmission experiment. ASV 65, classified as Cysteiniphilum litorale, showed strong disease associations consistent with
pathogenicity, including being significantly associated with WBD transmission within disease-exposed tanks (i.e. more abundant on
diseased fragments) and being significantly more abundant on the diseased experimental dose than the healthy dose. The V3-V4 16S
rRNA gene sequence for ASV 65 differed by only 1 of 415 bp from the C. litorale ASV identified as the putative WBD pathogen in the recent
multi-year study from Panama, suggesting a rare Caribbean-wide strain-level pathogen association. Eight additional disease-associated
ASVs were identified as potential opportunistic pathogens and included ASVs from the families Vibrionaceae and Colwelliaceae.
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Introduction putative coral pathogens complicates efforts to manage and treat

The rate and severity of marine epizootics has increased dramat- coral disease outbreaks.

ically in the last few decades [1, 2], partially in response to rapidly
warming ocean temperatures [3, 4]. Emergent coral diseases have
caused unprecedented mortality on Caribbean coral reefs with
stony coral tissue loss disease currently impacting more than 20
Scleractinian coral species [5-7] and white band disease (WBD)
decimating populations of Caribbean acroporid corals since 1979
[8, 9]. Despite the devastating impacts of coral diseases on trop-
ical reefs [10-12], the etiology of most coral diseases remains
unknown, with coral pathogens conclusively identified for only
six of the 20-plus known coral diseases [13, 14]. High coral micro-
bial diversity [15, 16], the complexity of the coral holobiont [17],
and the high frequency of opportunistic pathogens in marine
systems [18, 19] have made primary pathogen identification and
cultivation difficult [20, 21] and culture-independent genetic anal-
yses often identify tens to hundreds of disease-enriched bacteria
[22, 23] or candidate bacterial pathogens [24]. This lack of clear

A major difficulty in identifying putative pathogens for marine
diseases is distinguishing between primary pathogens and
opportunistic or secondary pathogens, especially given the high
prevalence of opportunistic pathogens in marine systems [18, 19].
Primary pathogens are disease agents capable of causing disease
regardless of the host’s health state or environmental conditions
(e.g. Pseudoalteromonas agarivorans in the sponge Rhopaloeides
odorabile [25, 26]). In this paper, we refer to bacteria that are
believed to be primary pathogens but for whom causality has
not yet been experimentally proven as putative pathogens and
bacteria who are associated with the diseased state but who
are unlikely to be pathogens as unlikely pathogens. Secondary
pathogens cause disease in weakened hosts who have already
been infected by a primary pathogen, resulting in a coinfection
(e.g. sea lice and Piscirickettsia salmonis in Atlantic salmon [27]).
Opportunistic pathogens, on the other hand, are able to cause
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disease in any host, healthy or diseased, when certain favorable
conditions are met. These favorable conditions can include
environmental factors (e.g. heat-stress [28] or eutrophication
[29]) or a weakened host immune system resulting from an
ongoing infection, in which case an opportunistic pathogen is
also acting as a secondary pathogen. When conditions are not
favorable for pathogenicity, they act as harmless commensal
members of the microbiome [30]. Opportunistic pathogens
can also be described as intrinsic pathogens, as the disease-
causing agent originated from within the native healthy micro-
biome, whereas primary pathogens can be termed extrinsic, as
the disease-causing agent originated from outside the native
healthy microbiome. Primary and secondary/opportunistic
pathogens can exhibit similar behaviors in active disease lesions
(e.g. high abundance, expression of virulence factors), which
greatly complicates differentiating them.

A new term for describing disease systems has recently
emerged in response to deepening understandings of disease
dynamics and the limitations of the traditional one pathogen-one
disease paradigm [31, 32]: a pathobiome is the whole microbial
community associated with a diseased host that has a direct
role in causing disease [21, 31]. Pathobiomes include interactions
between primary, secondary, and opportunistic pathogens, better
representing how dysbiotic bacterial communities influence
disease dynamics and differ from healthy microbiomes [21,
32, 33]. Examining disease-associated microbial communities
through the pathobiome lens therefore accounts for disease
systems with multiple co-infecting pathogens and systems where
the secondary and/or opportunistic pathogens modulate the
activity of the primary pathogen [31]. The pathobiome concept
of disease is highly applicable to coral diseases, especially given
the known frequent associations between opportunistic Vibrio
spp. and diseased microbiomes [34]. Examining the pathobiome
will deepen our understanding of the role of such opportunists in
pathogenesis.

A prime example of a coral disease outbreak is WBD, which
infects the two Caribbean acroporid species, Acropora cervicornis
[35] and A. palmata [9], as well as their hybrid [36, 37]. The
WBD epizootic has decimated up to 95% of Caribbean acroporid
populations [8, 9], rendering them critically endangered [38]. WBD
is caused by a bacterial infection whose transmission can be
arrested with the addition of broad-spectrum antibiotics [39, 40]
and by inhibiting bacterial quorum sensing [41]. Two forms of
WBD have been described based on differences in disease lesion
appearances—healthy tissue directly borders bare skeleton in
type I [9] whereas a region of bleached tissue separates them in
type I [35]—even though both types of disease signs are often seen
together on a single infected colony [42, Vollmer, pers. obs.]. Many
authors use the term WBD to describe this infection (8, 39, 43-46],
as we do here, while others favor the more general term of rapid
tissue loss [42, 47].

Although the Henle-Koch postulates have not been fulfilled
for WBD, early disease associations showed a strong relationship
between WBD infection and the genus Vibrio. Vibrio charcharia (now
Vibrio harveyi) was initially proposed as the putative pathogen [35]
and in situ exposure of an uncharacterized Vibrio sp. onto healthy
corals elicited WBD-like disease signs in A. cervicornis [48]. More
recent 16S rRNA gene amplicon sequencing studies have impli-
cated a wide range of disease-associated bacterial taxa across
more than nine bacterial families. Our previous transmission
experiments and field-based surveys of A. cervicornis identified
amplicon sequencing variants (ASVs)/operational taxonomic
units (OTUs) from the families Flavobacteriaceae, Vibrionaceae

[24, 41], Campylobacteraceae, Francisellaceae, and Pasteurellaceae [43]
as pathogen candidates for WBD. In situ grafting experiments
on A. cervicornis and A. palmata in Florida identified ASVs from
the families Sphingomonadaceae, Cryomorphaceae, Rhodobacteraceae,
and Vibrionaceae as being disease-associated, with the ASV from
Sphingomonadaceae, identified as Sphingobium yanoikuyae, proposed
as a potential putative pathogen [49]. Most recently, Selwyn et al.
[44] compared 16S rRNA gene amplicon sequencing data from
269 healthy and 143 diseased field-collected A. cervicornis samples
across multiple years using a novel ensemble machine learning
approach and identified two ASVs— a Cysteiniphilum litorale and
a Vibrio sp. — as likely pathogens for WBD. They confirmed these
results with a more traditional tank transmission experiment and
differential abundance analysis approach, which identified the
same two ASVs as pathogen candidates. Selwyn et al. [45] further
examined how antibiotic pretreatment prior to disease exposure
impacts bacterial community composition and disease outcomes.
They found that antibiotic pretreatment on healthy staghorn
corals significantly reduced the abundance of the intrinsic WBD-
associated Vibrio ASV, thereby suppressing WBD transmission
in disease-exposed corals and suggesting that this Vibrio sp. is
an opportunistic pathogen. The putative extrinsic pathogen C.
litorale was not detected on healthy corals prior to WBD-exposure
and abundances were, therefore, unaffected by the antibiotic
treatment.

A. cervicornis genotypes also display phenotypic variation in
disease resistance to WBD [50-52] with more than 20% of individ-
uals being highly resistant to infection [52]. Using a genome-wide
association study on A. cervicornis from tank-based transmission
experiments in Florida and Panama, Vollmer et al. [52] demon-
strated that 6.1% of variation in WBD resistance is genetic and
developed a polygenic model that can accurately predict disease
resistance from as few as 10 key genetic loci. The presence of
probiotic microbes in the coral holobiont has also been suggested
as a possible mechanism for disease resistance, with Myxococ-
cales [49] and Endozoicomonas [43] being previously identified as
potential probiotics in A. cervicornis. Conversely, the intracellular
bacterial parasite “Candidatus Aquarickettsia rohweri” has been
linked to increased disease susceptibility in Florida [53].

In this study, we obtained 16S rRNA gene amplicon sequenc-
ing data from the 50 nursery-raised staghorn coral genotypes
from Florida used in Vollmer et al.’s [52] tank-based transmission
experiment in order to determine whether any bacterial ASVs
initially present on these staghorn coral genotypes were positively
or negatively correlated with their observed disease resistance
and identify bacterial ASVs that were associated with disease
exposure and outcome. Positive and negative bacterial associa-
tions with disease resistance were tested with correlation tests
for 16 staghorn coral genotypes displaying a range of variation
in disease resistance. We applied linear mixed-effects regressions
to longitudinal samples of 46 A. cervicornis genotypes to identify
bacterial ASVs that differed significantly due to time, disease
exposure, and/or disease outcome. Using post hoc contrasts, we
differentiated putative primary pathogens from general disease-
associated opportunists based on their differential abundances,
resulting in a reduced list of pathogen candidates.

Materials and methods
Tank-based transmission experiment

A tank-based transmission experiment was performed at the
Florida Keys Marine Laboratory in June 2021 using 550 frag-
ments from 50 genotypes of A. cervicornis collected from the Coral
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Restoration Foundation nursery in Tavernier, Florida, to calculate
genotype-level disease resistance scores (details published in [52])
and examine changes over time in the coral microbial com-
munities as a result of disease exposure and infection (Fig. 1A).
Coral Restoration Foundation's in situ nursery consists of PVC
pipe “trees,” each containing fragments of one genotype, where
coral fragments are grown suspended in the water column using
fishing line. One sample of each genotype (day 0) was taken
immediately after collecting fragments from the nursery to exam-
ine the unaltered native microbiomes. Microbial diversity differs
significantly between coral genotypes [54, 55], so sampling was
performed across genotypes (i.e. genotype-level replication) to
capture most of the microbial diversity present in the nursery
and establish a baseline average microbiome for healthy nursery-
raised A. cervicornis. One limitation is that this assumes that the
average microbiome composition of these day 0 samples is repre-
sentative of healthy corals in the nursery environment, so it may
underestimate the true microbial diversity within a genotype. The
remaining 10 independent replicate fragments per genotype were
distributed across 10 18-liter recirculating tanks held at ambient
temperatures such that each tank contained one fragment from
all 50 coral genotypes (50 fragments per tank total). Each tank
was dosed with 50 ml of a healthy or diseased tissue slurry
(hereafter referred to as healthy and diseased “doses”), with five
replicate tanks being “healthy-exposed” and five replicate tanks
being “disease-exposed.” These homogenate doses were created
by using a WaterPik containing filtered seawater to remove the
tissue from five healthy and five diseased nursery-collected frag-
ments of A. cervicornis, then normalizing the optical density across
the two slurry types. Coral fragments in the tanks were lesioned
with a WaterPik to facilitate transmission. Three polyps were
sampled from each fragment on day 3 after exposure and again
on either day 7 or when the fragment developed disease signs,
whichever occurred first. Polyps were sampled from the disease
interface for diseased individuals. Fragments were monitored for
disease signs at least twice per day and fragments displaying
symptoms of disease were removed from the tanks to prevent
amplification of transmission. Sampled polyps were stored in
the preservative DNA/RNA Shield (Zymo Research, Irvine, CA,
USA) at —20°C for less than two months before performing DNA
extractions.

16S rRNA gene amplicon sequencing

Genomic DNA was extracted from each coral sample using a
GenElute Bacterial Genomic DNA kit (Sigma-Aldrich, Burlington,
MA, USA). The V3-V4 region of the 16S rRNA gene was ampli-
fied using the following primer pairs: (i) S-D-Bact-0341b-S-17 [5'-
CCTACGGGNGGCWGCAG-3']; and (i) S-D-Bact-0785-a-A-21 [5'-
GACTACHVGGGTATCTAATCC-3'] [56, 57]. Each 23 uL PCR reaction
was performed using 1 puL DNA, 1.25 uL each 10 mM primer,
12.5 L 2X Phusion Mix (Thermo Fisher Scientific, Waltham, MA,
USA), and 7 uL molecular biology grade water. The PCR program
consisted of initial denaturation for 1 min at 98°C, 28 cycles of
denaturation (30 s at 98°C), annealing (30 s at 63°C), and extension
(30 s at 72°C), and a final extension phase of 5 min at 72°C.
PCR products were then cleaned using a ZR-96 DNA Clean-Up
kit (Zymo Research, Irvine, CA, USA). Indexes for sequencing
were added during a separate PCR reaction using 5 uL purified
PCR product, 2.5 pL each index primer, 12.5 uL 2X Phusion Mix
(Thermo Fisher Scientific, Waltham, MA, USA), and 2.5 uL molec-
ular biology grade water. The PCR program consisted of initial
denaturation for 1 min at 98°C, 12 cycles of denaturation (30 s at
98°C), annealing (30 s at 55°C), and extension (30 s at 72°C), and a

final extension phase of 5 min at 72°C. Indexed PCR products were
cleaned and normalized using a SequalPrep Normalization Plate
kit (Thermo Fisher Scientific, Waltham, MA, USA), then pooled
and concentrated using a DNA Clean & Concentrator kit (Zymo
Research, Irvine, CA, USA). These amplified products were then
sequenced on two runs of Illumina MiSeq 2x300 bp sequencing.
The 16S rRNA gene reads were quality trimmed, overlapped, and
assembled using the DADA2 denoising algorithm and pipeline in
R v4.4.1 [58, 59] to generate ASVs, then chimeras were removed.
This pipeline consisted of the following functions and nondefault
parameters: filtering and trimming with filterAndTrim() using
trimLeft =25, truncLen =c(250, 230), maxEE =¢(2, 2); dereplication
with derepFastq(); error rates were estimated with dada() on
the first 40 samples using err = NULL, selfConsist = TRUE; sample
inference was run with dada() using the estimated error rates and
pool =TRUE; paired reads were merged with mergePairs(); an ASV
table was generated with makeSequenceTable(); and chimeras
were removed with removeBimeraDenovo(). ASV taxonomy was
assigned first using BLcA, a Bayesian taxonomic classifier based on
the NCBI microbial 16S rRNA gene full-length database (accessed
02/05/2024), where ASVs were classified to the lowest taxonomic
rank with at least 80% classification confidence [60]. Any ASVs
that did not have confident classifications below the class level
were then reclassified using the SILVA SSU database r138 [61]
using a threshold of 50. DECIPHER [62] was then used to align ASV
sequences and PHANGORN [63] was used to generate a neighbor-
joining tree of these aligned sequences. A PHYLOSEQ object [64]
was then created using the ASV table, taxa table, and 16S rRNA
gene tree, which was merged with the sample metadata and used
for downstream analyses.

Data was filtered to retain only ASVs within the domain Bac-
teria and to remove chloroplast, mitochondrial, and cyanobac-
terial sequences as potential host/symbiont contamination [65,
66]. This removed 52 Cyanobacteria ASVs, all of which would
have been filtered out downstream regardless as a result of low
prevalence. Samples were then filtered to contain a minimum
of 1000 16S rRNA gene reads per sample and to only include
coral genotypes that had longitudinal data across days 3 and 7.
The day 0 samples consisted of a subset of 16 staghorn coral
genotypes chosen to represent a wide range of disease resistance
values. After calculating alpha diversity metrics, ASVs in fewer
than 20% of samples were removed due to low prevalence and
ASVs that were not present in either homogenate dose or on the
day 0 samples were removed as potential contaminants origi-
nating from the tank environment. This 20% prevalence cut-off
was chosen because 27.3% of the samples sequenced were from
diseased corals and we would expect a true pathogen to be present
in all diseased individuals according to the Henle-Koch disease
postulates. This filtering step removed the majority of ASVs that
were not consistent across all diseased samples and, therefore,
could not be potential pathogens. Choosing data filters is a bal-
ance between removing noise that will interfere with properly
detecting patterns and not filtering so stringently that potentially
important ASVs are removed prior to analysis and not detected.
Although the filters applied here were chosen thoughtfully, the
possibility exists that biologically relevant ASVs are missing from
the final filtered dataset used in the differential abundance anal-
ysis. This filtered dataset was used in all downstream analyses
except community composition visualization and alpha diversity
analyses, which both used the unfiltered dataset. Read counts
were normalized using the trimmed mean of M-values with sin-
gleton pairing method in EDGER, which also considers effective
library size, to account for differing levels of sequencing depth, a
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Figure 1. Schematic showing (A) the experimental design of the tank transmission experiment and (B-E) representative examples of the differential
abundance comparisons used to identify putative pathogens and opportunists. (A) Five hundred coral fragments from 50 genotypes were divided
evenly between 10 tanks, with half of the tanks being exposed to a healthy tissue homogenate and the other half exposed to a diseased tissue
homogenate. Samples were taken for 16S rRNA gene amplicon sequencing from the tissue homogenates as well as day 0 (nursery-collected fragments)
and days 3 and 7 post-exposure to the homogenate doses. Differential abundance comparisons include differences based on (B) disease outcome,

(C) early vs. late growth response on corals that contract disease, (D) disease outcome within disease-exposed tanks, and (E) diseased vs. healthy

homogenate doses.

normalization process termed ELib-TMM [67, 68]. These normal-
ized counts plus a pseudo-count of 0.5 were then transformed into
log, counts per million reads, which were used in all downstream
analyses. This normalization method shows similar performance
to the frequently used ANCOM-BC normalization method while
also allowing for full contrasts and post hoc tests within modeling
frameworks [69], such as the linear mixed-effects models with
interactions and post hoc analyses employed here. In general, the
random effect of tank in the following models was applied only
to the day 3 and day 7 samples, all of which were incubated in
our experimental tank setup. Day zero samples were nursery-
collected and thus the microbiome composition of each fragment
is relatively independent compared to samples sharing the same
aquarium unit. All false discovery rate (FDR) corrections were
made using the Benjamini & Hochberg method [70] and a P-value
threshold of 0.05.

Community level analyses

Overall trends in microbial community composition between
timepoints, exposure types, and disease outcomes were visualized
using the R package Fantaxtic [71]. The complete unfiltered

dataset was used for this visualization to fully capture the
observed microbiome diversity. The 11 most abundant bacterial
orders across all samples and the four most abundant genera
within each order were visualized, with all other bacterial orders
grouped into the “Other” category.

Two alpha diversity metrics—the Shannon diversity index and
Simpson’s dominance index—were calculated using the micro-
biome package in R [72] and analyzed via a linear mixed-effects
regression to examine differences in alpha diversity related to
sampling time, exposure, and disease outcome, with genotype
and tank as random effects. Abundance count data was first
rarefied to the lowest sequencing depth of any sample using
seed number 68748 to account for uneven library sizes between
samples.

Differences between samples driven by time, exposure, and dis-
ease outcome were visualized via a non-metric multidimensional
scaling (NMDS) plot based on microbial distances between the
sampled fragments, which was calculated using the Bray—Curtis
dissimilarity index [73]. Differences in microbiomes across these
three factors, as well as across genotype and tank, were examined
using a permutational ANOVA with 10000 permutations and seed
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number 68748. These beta diversity analyses were performed on
the set of filtered ASVs.

Bacterial associations with disease resistance

To examine whether the bacterial consortium in a native A.
cervicornis microbiome can predict an individual’'s observed level
of disease resistance, a Kendall's correlation test between normal-
ized 16STRNA gene abundances and disease resistance scores was
run for nursery-collected day O fragments. Both positive associa-
tions, such as beneficial microbes, and negative associations, like
parasites or lurking opportunists, were considered. These correla-
tion tests were run at the ASV, genus and family levels to detect
associations across multiple taxonomic ranks, and P-values were
FDR-corrected. Observed disease resistance was calculated using
a Cox proportional hazards model and published in Vollmer et al.
[52]. Taxonomic groups with previously documented associations
to WBD resistance were also specifically examined.

Identifying key amplicon sequencing variant
associations

To identify pathogens, opportunists, and potentially beneficial
microbes, we ran weighted linear mixed-effects regression
models for each ASV with fixed effects of sampling time,
exposure, and disease outcome and random effects of genotype
and tank. Observation-level weights were calculated using
voomWithDreamWeights in the variancePartition package [74—
76]. Only ASVs showing a significant main effect of treatment
type (sampling time, exposure, and/or disease outcome) were
retained for further analysis. ASV relative abundances in the
healthy versus diseased homogenate doses were examined
using linear models. All P-values for the main effects in
both models were FDR-corrected. We then set up two-sided
post hoc contrasts for transplant effect, exposure, and disease
outcome to investigate key patterns in ASV relative abundances
(Supplementary Table S1).

First, we used a transplant effect contrast to filter out ASVs
whose abundances strongly shifted on healthy-exposed corals as
a result of being transplanted into the tank environment. We
compared ASV relative abundances on the nursery-collected day
0 samples to the average of the tank-incubated healthy control
samples on days 3 and 7. This identified ASVs whose abundances
changed significantly between healthy fragments in the in situ
nursery and healthy control fragments in the tank environments,
where significant differences between the two can be largely
attributed to their transplant into the tank environment and
bacterial strains responding either well or poorly to this new envi-
ronment. A significant positive association for transplant effect
identifies ASVs that thrive in the tank environment whereas a
negative association identifies ASVs with poor growth and sur-
vival in the tanks. These transplant effect-associated ASVs were
removed from downstream analyses to minimize false positives.

Next, we identified putative opportunists via the disease
exposure contrast by comparing healthy-exposed and diseased-
exposed fragments across days 3 and 7, regardless of final disease
outcome. The directionality of this contrast indicated whether the
significant ASVs were associated with exposure to the healthy
or the diseased dose. ASVs that are significant for exposure to
the diseased dose represent opportunists, as they are abundant
on both diseased and healthy corals that were exposed to the
diseased homogenate. Conversely, ASVs associated with the
healthy exposure (i.e. dose) likely represent commensalists that
are outcompeted or killed by opportunists in a compromised host
environment.

We then used a disease outcome contrast to compare samples
that contracted disease to all fragments that remained healthy
with directionality indicating whether the ASV is associated with
a healthy or diseased outcome (Fig. 1B). ASVs that show a signifi-
cant positive association with a diseased outcome represent puta-
tive pathogen candidates whereas ASVs significantly positively
associated with the healthy outcome are likely core members of
a healthy microbiome that are lost during infection or potentially
beneficial microbes that may confer resistance to infection.

To further eliminate latent opportunists from our primary
pathogen candidates, additional criteria were applied to the
ASVs showing a significant association with a diseased outcome.
First, ASVs were categorized into two groups based on when
their abundance spiked on diseased corals relative to the
emergence of visible disease lesions: early and late responders
(Fig. 1C). Early responders significantly increased in abundance
on diseased corals between days O and 3, prior to the onset
of disease symptoms. Late responders showed this significant
increase between days 3 and 7, during the same period of
time in which disease signs manifested. Within disease-exposed
fragments, abundances were then compared between individuals
that contract disease versus those that remain healthy at the
timepoint of the highest bacterial growth; for early responders,
this comparison was made on day 3 whereas day 7 was examined
for late responders (Fig. 1D). Requiring bacterial abundances
to be significantly higher on diseased fragments than disease-
exposed healthy fragments at this key timepoint removed latent
opportunistic bacteria that were not identified by the exposure
contrast because they show a signature of opportunism at only
one key timepoint rather than throughout the experiment. This
limited our candidate pool to only include strong pathogen
candidates and WBD-associated opportunists that display similar
growth signatures as a putative pathogen.

Finally, we expected that a pathogen would be highly abundant
in the diseased homogenate dose, given that the dose was created
from tissue with active WBD lesions. Putative pathogens were
therefore required to have elevated abundances on the diseased
dose compared to the healthy dose (Fig. 1E). This criterion sepa-
rates putative pathogens from WBD-associated opportunists and
provides a substantially reduced list of candidate pathogens.

Results

A representative subset of 234 samples were chosen for 16S V3-V4
TRNA gene amplicon sequencing, comprised of 206 samples total
across 48 genotypes from days 3 to 7 of the tank-based experi-
ment, 18 nursery-collected day 0 samples across 18 genotypes,
and 10 samples of the homogenate doses (five healthy dose and
five diseased dose samples). All 16S rRNA gene data was filtered
for a minimum of 1000 reads per sample (Supplementary Fig. S1)
and for genotypes that showed full temporal presence in the
tank environment (i.e. present post-filtering on day 3 and day 7
in any tank). This resulted in 195 samples across 46 genotypes
from the tank transmission experiment and 16 nursery-collected
day 0 samples from 16 genotypes that span a diversity of disease
resistance scores. 10 of the 250 disease-exposed fragments (4.0%)
showed visible disease signs on day 3, whereas 133 of the 250
disease-exposed fragments (53.2%) displayed visible WBD signs
by day 7. The 16S rRNA gene dataset consisted of 5716 bacterial
ASVs from 49 classes, 102 orders, and 219 families and 411 genera
(Fig. 2; Supplementary Data S1). This was reduced to 254 ASVs
after filtering out ASVs found in less than 20% of samples and
ASVs that did not originate on either of the homogenate doses
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Figure 2. The relative abundances of the 11 most abundant microbial orders across all samples, indicated by color, with shades of each color
indicating the four most abundant genera within each order. The complete, unfiltered dataset was used to generate these relative abundances.
Samples were grouped based on timepoint and the exposure type and/or disease outcome. Sample sizes for each bar are listed below the x-axis labels.

(representing potential transmissible pathogens) nor in the native
day 0 microbiome (as an intrinsic member of the coral holobiont).
Homogenate doses contained 199 of the 254 ASVs and spanned 14
classes, 29 orders, 48 families, and 61 genera.

Community level analyses

Large variations in microbial relative abundances were observed
between timepoints, exposure types, and disease outcomes
(Fig. 2). The 11 most abundant bacterial orders constituted a large
proportion of the observed diversity in the tank environment,
ranging from 90.1% (day 3, disease-exposed) to 95.6% (day 7,
disease-exposed diseased).

Both alpha diversity metrics rarefied to the lowest sequencing
depth of any sample (1029 reads) — the Shannon diversity
index and Simpson’s dominance index — varied significantly
by sampling time (Shannon: ty;s=-5.73, P < .001; Simpson:
ta5=4.78, P < .001) and not by disease exposure or disease
outcome (Supplementary Table S2). Shannon diversity dropped
significantly from 3.61+0.15 SE for day O to 2.024+0.18 SE on
day 3 of the tank experiment (t;o,=-8.88, P < .001) and then
increased significantly to 3.30+0.10 SE on day 7 (t1ea=13.4, P <
.001; Fig. 3A). Simpson’s dominance index increased significantly
from 0.10+0.03 SE for day O nursery samples to 0.34+0.04 SE
on day 3 (ti0s =6.74, P < .001) and then decreased significantly to
0.13+0.02 on day 7 (tiea=—10.7, P < .001; Fig. 3B). The increase
in Shannon diversity and corresponding drop in Simpson's
dominance were associated with a spike in MD3-55 (newly termed
“Candidatus Aquarickettsia”) relative abundance at day 3 of the
tank experiment (Fig. 2). These alpha diversity metrics trended
back towards their initial values with the decrease in relative
abundance of MD3-55 by day 7.

NMDS and permutational ANOVA analyses show that the
composition of the microbial communities differed significantly
across all factors (Fig. 4, Supplementary Table S3). Time accounted
for 36.03% of the observed variation (F, 153 =90.10, P < .001),
genotype accounted for 13.55% (Fus 153 =1.51, P < .001), experi-
mental tank for 6.29% (F, 153 =5.24, P < . 001), disease outcome
for 5.80% (F1,153=28.99, P < . 001), and exposure for 3.46%
(Fq, 153 =17.30, P < .001).

Bacterial associations with disease resistance

We used Kendall’s correlation tests to determine whether any
bacterial ASV, genus or family initially present on the 16 staghorn
coral genotypes sampled on day O could predict their observed
disease resistance scores, which ranged from 0.03 to 0.64 (aver-
age: 0.41+0.05 SE) where higher values correspond to greater
resistance to WBD infection. No significant positive or negative
associations were detected between observed disease resistance
and any bacterial ASV, genus or family, including in the order
Myxococcales (r=0.07, P =.96) and the genus Endozoicomonas (not
present at detectable levels), which have previously been pos-
itively associated with healthy corals, or in the genus MD3-55
(sensu “Ca. Aquarickettsia”; r=0.02, P = .97), which has previously
been positively associated with increased susceptibility to WBD.

Differentially abundant amplicon sequencing
variants by disease exposure, outcome, and
transplant effect

Our weighted linear mixed-effects model analyses identified 118
ASVs that differed significantly in their relative abundances
across one or more main effects (transplant effect, disease
exposure, or disease outcome; Supplementary Fig. S2). Ninety-
eight ASVs differed due to transplant effects and were excluded
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Figure 4. Community composition via NMDS considering tank, time, exposure, disease outcome, and genotype. Ellipses represent 95% confidence
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from downstream analyses (Supplementary Fig. S2). No ASVs
differed by exposure type (healthy vs. diseased) in the tank
environment, whereas 20 ASVs differed significantly by disease
outcome. Of these, 18 ASVs were more abundant on WBD-
infected fragments and two ASVs—one each from the genera
Thalassoglobus (ASV 301) and Arenicella (ASV 127)—were associated
with healthy corals (Supplementary Fig. S2).

For the 18 disease-associated ASVs, we applied additional
post hoc tests to further refine the pathogen candidate list
(Supplementary Table S4). We first classified these disease-
associated ASVs into early or late responders by testing whether
their abundances increased significantly over time on diseased
corals, with early responders increasing in abundance between
days O and 3 and late responders increasing between days 3
and 7. Six ASVs were categorized as early responders, 12 ASVs
were late responders, and no ASVs responded continuously.
We then assessed whether their abundances differed between
healthy and diseased corals within disease-exposed tanks on
day 3 (early responders) or day 7 (late responders). None of the
six early responders differed significantly by disease outcome

in the disease-exposed tanks at day 3, but nine of the 12 late
responders differed significantly due to disease outcome at day
7 and thus represent the most likely pathogen candidates (Fig. 5,
red triangles).

The nine late responding pathogen candidates include one
ASV from the genus Cysteiniphilum (ASV 65), seven ASVs from the
family Colwelliaceae — five of which are in the genus Thalassotalea
(ASV 88, 144, 148, 372, 769) and two of which are unclassified
at the genus level (ASV 166 and ASV 939) — and one ASV from
the genus Vibrio (ASV 134; Supplementary Fig. S3). Only ASV
65, classified as Cysteiniphilum litorale, also differed significantly
between the healthy and diseased experimental doses used in the
transmission experiment (Fig. 5, purple squares).

Discussion

Initial staghorn coral microbiomes do not predict
observed disease resistance

Beneficial coral microbes are thought to play a key role in pro-
moting holobiont health and resisting infection [77]. Ritchie [78]
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Figure 5. The log; fold change in abundance between diseased and healthy treatments for the 18 disease-associated ASVs showing a significant effect
of outcome, including the top pathogen candidate, Cysteiniphilum litorale (ASV 65). Outcome (orange diamonds) indicates the difference between
fragments that contract disease and those that remain healthy. Outcome within disease-exposed tanks (red triangles) compares between infected
fragments and disease-exposed fragments that remained healthy. The homogenate doses contrast (purple squares) compares the homogenate doses
added to the tanks on day 0. Filled shapes indicate a significant difference. Bolded ASVs are late responders whereas nonbolded ASVs are early

responders. Error bars represent standard error.

identified numerous antibiotic-producing resident bacteria in A.
palmata, the sister species to A. cervicornis, that inhibit the growth
of pathogenic bacteria. Ushijima et al. [79] recently isolated the
probiotic Pseudoalteromonas sp. strain McH1-7, which fully arrests
the transmission of stony coral tissue loss disease on Montastraea
cavernosa. In A. cervicornis, the order Myxococcales [49] and the
genus Endozoicomonas [43] have been positively associated with
healthy corals in disease transmission assays, whereas parasitic
“Candidatus Aquarickettsia rohweri” have previously been found at
high abundances on WBD susceptible A. cervicornis in Florida [53].
Yet, we failed to detect any significant positive or negative asso-
ciations between host disease resistance and any bacterial ASV,
genus or family in the native microbiomes of the 16 staghorn coral
genotypes sampled at day 0, including no significant positive asso-
ciations with the taxa Myxococcales and Endozoicomonas or sig-
nificant negative associations with parasitic “Ca. Aquarickettsia.”
Instead, “Ca. Aquarickettsia” (MD3-55) ASVs spiked in abundance
on day 3 regardless of disease exposure and then dropped off
towards day 7, which is consistent with MD3-55 sp. being a highly
infectious parasite [80]. Interestingly, “Ca. Aquarickettsia” domi-
nate nursery-raised A. cervicornis microbiomes from Florida (this
study, [49, 81]) and the Cayman Islands [54, 82], but are at very low
prevalence in wild staghorn populations from Panama [44]. This
may reflect broader phylogeographic differences in staghorn coral
microbiomes and/or different infection histories of this bacterial
parasite, including between nursery-raised and wild populations.

Putative white band disease pathogens and
opportunists

Of the nine late responding pathogen candidates identified here,
only ASV 65—classified as Cysteiniphilum litorale in the family

Fastidiosibacteraceae—also differed significantly in abundance
between the diseased and healthy homogenate doses used in
the transmission experiment. This suggests that this ASV is
an extrinsic pathogen that was introduced into the tanks at
higher abundances on the diseased dose. Cysteiniphilum litorale
was first isolated from seawater off the coast of southern
China [83] and the closely related Cysteiniphilum sp. QT6929
(97% similarity to ASV 65; 401/415 bp) was cultured from a
human skin infection resulting from an injury while handling
estuarine shrimp [84, 85], demonstrating the pathogenic potential
of this genus. The family Fastidiosibacteraceae is closely related
to the highly pathogenic family Francisellaceae [86, 87] and
published Cysteiniphilum genomes contain multiple virulence
factors, including a portion of the Francisella pathogenicity island
[84]. At the close of the tank transmission experiment, ASV 65
was detected on 71.35%+0.14% SE of diseased fragments of A.
cervicornis compared to only 11.26%+0.10% SE of all healthy
fragments, regardless of exposure. Similarly, the prevalence of
this ASV on the putatively healthy nursery-collected samples
was only 6.10% +0.08% SE.

Cysteiniphilum litorale has previously been associated with WBD
[43-45, 88], including several associations prior to the separation
of Fastidiosibacteraceae from the family Francisellaceae [87]. Most
significantly, Selwyn et al. [44] identified C. litorale as the top WBD
pathogen candidate in their machine learning analyses of two
years of field sampling in Panama and an independent tank-based
transmission experiment, which supported its link to disease
transmission. Their C. litorale ASV25 differed from our ASV 65 by
only one out of 415 nucleotides (0.24%). Therefore, this implicates
for the first time two highly similar strains of C. litorale across
the Caribbean as the most likely WBD pathogen. Cysteiniphilum
litorale is culturable [83] and next steps should include culturing
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the strains identified here with the aim of satisfying the Henle-
Koch postulates via disease transmission assays.

The other eight late responding, disease outcome-associated
ASVs did not differ in abundance between the healthy and dis-
eased experimental doses, indicating that they are mostly likely
secondary opportunists. One of these, ASV 134, belongs to the
genus Vibrio, which has been repeatedly linked to WBD [24, 438,
49], with Vibrio charcharia (= V. harveyi) initially proposed as the
putative pathogen for WBD [35]. Vibrios are well-known marine
opportunistic pathogens [89-91] that have been implicated in a
variety of other coral diseases [34], including recent links to the
highly destructive stony coral tissue loss disease [92-94]. Selwyn
et al. [44] identified a Vibrio sp. (ASV 8) as one of two likely
pathogen candidates for WBD in Panama alongside C. litorale.
While our C. litorale ASV differed from Selwyn’s by a single base,
our Vibrio ASV 134 differed from their top Vibrio ASV8 by 21 out
of 417 nucleotides (5% different), indicating that different Vibrio
species or strains are contributing to WBD outcomes across the
Caribbean. Moreover, Selwyn et al. [45] found that treating coral
fragments with antibiotics prior to disease exposure significantly
reduced abundances of native Vibrio communities, particularly
ASV8, and led to decreased WBD transmission. In general, this
suggests that Vibrio spp. are likely playing a key role as secondary
opportunistic members of the WBD pathobiome [43, 49].

The remaining seven late responding, disease-associated
opportunists belong to the family Colwelliaceae with five ASVs
belonging to the genus Thalassotalea (ASV 88, 144, 148, 372, 769)
and two ASVs being unclassified at the genus level (ASV 166 and
ASV 939). Colwelliaceae spp. are not well-known marine pathogens,
although members of this family have been associated with
disease in a variety of marine systems, including lobster shell
disease [95] and wasting disease in eelgrass [96]. Colwelliaceae
has also been associated with several coral diseases, such as
WBD [23, 43, 82], stony coral tissue loss disease [93, 97] and
white plague-like diseases in the Pacific [98] and the Red Sea
[99]. Colwelliaceae spp. decompose organic matter [100] and have
been shown to respond strongly to the input of dissolved organic
matter [101], suggesting that they may be involved in the wasting
phase of disease [96]. This role in breaking down organic material
may explain the frequent opportunistic associations between
Colwelliaceae spp. and marine diseases.

Conclusions

Our 16S rRNA gene amplicon sequencing of staghorn corals with
known variation in genotypic disease resistance failed to iden-
tify any significant positive or negative associations between a
staghorn coral’s native microbiome and its observed resistance to
WBD. Instead, we identified nine late responding bacterial ASVs
that were strongly associated with WBD outcomes in the tanks,
including ASV 65—a Cysteiniphilum litorale—as the top pathogen
candidate. The identification of C. litorale as the putative WBD
pathogen in this Florida nursery-based transmission experiment
matches recent findings in wild staghorn coral populations in
Panama and suggests that highly related C. litorale strains likely
cause WBD across the Caribbean. To our knowledge, this is the
first example of a basin-wide strain-level pathogen association for
a coral disease. Efforts should now focus on the cultivation of ASV
65, C. litorale, to fulfill the Henle-Koch postulates.
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